

ON SEMI-INFINITE SYSTEMS OF LINEAR INEQUALITIES*

BY

R. G. JEROSLOW AND K. O. KORTANEK

ABSTRACT

The ordered field $R(M)$ consists of the reals R with a transcendental M adjoined, which is larger than any real $r \in R$. Given any semi-infinite matrix (s.i.m.) interpreted as linear inequalities: $u^t P_i \geq c_i$, $\forall i \in I$, an arbitrary index set, it is also shown that the following are equivalent. (1) For every finite $J \subseteq I$ the system $u^t P_i \geq c_i$, $i \in J$ is consistent, and (2) the s.i.m. has a solution $u \in R(M)^n$. Some consequences for "duality gaps" are also given.

The main result of this paper is Theorem 1. The ordered field $R(M)$ referred to in Theorem 1 and Lemma 1 consists of the reals R with a transcendental M adjoined and with ordering derived from the infinite valuation in which $a < M$ for all $a \in R$.

Theorem 1 is a compactness-type result, but, insofar as we know, it cannot be derived from the Compactness Theorem of Mathematical Logic which can insure the existence of a solution to (1) in *some* non-Archimedean elementary extension of R . $R(M)$ is not such an elementary extension since $\sqrt{M} \notin R(M)$.

The existence of solutions to (1) in $R(M)$ under the hypotheses of Theorem 1 is equivalent to the fact that the limiting behavior of "approximate solutions" to (1) in an appropriate locally convex topology can be replaced by algebraic characterizations parametrized by polynomials over $R(M)$.

These results were obtained by working from the duality theory of Ben-Israel, Charnes, and Kortanek (see [1]–[4]) and Kortanek [10], but are here proven using convexity theory directly. The results were announced earlier in [9].

1. The main result

Let an infinite set of linear inequalities be given and symbolized thus:

$$(1) \quad u^t P_i \geq c_i, \quad i \in I$$

* These results were obtained as part of the activities of the Management Science Research Group and School of Urban and Public Affairs, Carnegie-Mellon University.

Received October 25, 1970 and in revised form May 12, 1971

where I is an arbitrary set, $P_i \in R^n$ for all $i \in I$, and $c_i \in R$ for all $i \in I$. A vector $u \in F^n$ for which (1) holds, where F is an ordered field extending R , is called a *solution* to (1).*

LEMMA 1. *Suppose that, for every finite set index $J \subseteq I$, the finite system*

$$(2) \quad u^t P_i \geqq c_i, \quad i \in J$$

has a solution in R^n . Let W be the space spanned by $\{P_i \mid i \in I\}$. Then either

- (i) *The problem (1) has a solution in R^n , or*
- (ii) *There exists a vector $u \in W$, $u \neq 0$, such that*

$$u^t \cdot P_i \geqq 0 \text{ for all } i \in I.$$

PROOF. Let $A = \{(P_i, -c_i) \mid i \in I\} \cup \{(0, 1)\}$ where $(0, 1) \in R^n \times R \cong R^{n+1}$. Let $C(A)$ be all non-negative linear combinations of the elements of A . Note that $C(A)$ is a subset of $W \times R$ and is in fact a convex cone.

Case 1. $C(A) = W \times R$.

Then there exist scalars $\lambda_i \geqq 0$, $i \in J$, where $J \subseteq I$ is finite, and a scalar $\mu \geqq 0$ such that

$$\sum_{i \in J} \lambda_i (P_i, -c_i) + \mu(0, 1) = (0, -1).$$

where $(0, -1) \in W \times R$. By the hypotheses concerning (2), there exists an $x \in R^n$ satisfying (2), and so, by the above equation separated into its component equations,

$$\begin{aligned} 0 = 0 \cdot x &= \sum_{i \in J} \lambda_i P_i x \geqq \sum_{i \in J} \lambda_i c_i \\ &\geqq \sum_{i \in J} \lambda_i c_i - \mu = +1, \end{aligned}$$

a contradiction. Evidently, then, this case cannot arise.

Case 2. $C(A) \neq W \times R$

Since $C(A)$ is a cone, the origin must be a boundary point to $C(A)$, and hence, by the separating hyperplane theorem, there exists $v = (u, \alpha) \neq 0$, where $u \in W$, $\alpha \in R$, such that :

$$(u, \alpha) \cdot (P_i, -c_i) \geqq 0, \quad i \in I$$

$$(u, \alpha) \cdot (0, 1) \geqq 0.$$

* We call (1) a *semi-infinite* system of linear inequalities because n is finite.

The last equation gives $\alpha \geq 0$. If $\alpha > 0$, from the first equation we get

$$u^t P_i \geq \alpha c_i, \quad i \in I$$

i.e.,

$$\frac{u^t}{\alpha} P_i \geq c_i, \quad i \in I.$$

Then (1) has a solution in R^n . If $\alpha = 0$, then the first equation gives

$$u^t P_i \geq 0, \quad i \in I.$$

Since $v \neq 0$ and $\alpha = 0$, we have $u \neq 0$.

Q.E.D.

THEOREM 1. *With the hypotheses and notation of Lemma 1, there is a solution u to (1) with $u \in R(M)^n$ such that all components of u are polynomials of degree not exceeding the dimension of W .*

PROOF. The proof is by induction on $d =$ the dimension of W .

For $d = 0$, evidently $P_i = 0$ for all $i \in I$, and so by the hypothesis regarding (1), each $c_i \leq 0$, $i \in I$, and hence (1) has a solution in R^n and we obtain a polynomial solution in $R(M)^n$ of degree $\leq d = 0$.

If $d > 0$, and (1) has a solution in R^n , we are again done. If (1) does not have a solution in R^n , then by Lemma 1 there exists a vector u such that $u^t P_i \geq 0$, $i \in I$. We then define

$$Q = \{P_i \mid u^t P_i > 0\}$$

$$Q' = \{P_i \mid u^t P_i = 0\}.$$

Since $u \in W$ and $u \neq 0$, Q' has dimension $\leq (d - 1)$. Since the system

$$u^t P_i \geq c_i, \quad P_i \in Q'$$

satisfies hypotheses like (1), by induction we have the existence of a solution $\tilde{u} \in R(M)^n$ whose coordinates are polynomials of degree $\leq d - 1$ such that

$$\tilde{u}^t P_i \geq c_i, \quad \text{all } P_i \in Q'.$$

Then defining $\hat{u} = M^d u + \tilde{u}$ we see that $i \in Q' \rightarrow \hat{u}^t P_i = M^d u^t P_i + \tilde{u}^t P_i = 0 + \tilde{u}^t P_i \geq c_i$ and also $i \in Q - Q' \rightarrow \hat{u}^t P_i > c_i$ since $u^t P_i > 0$ and M^d exceeds \tilde{u} in size by virtue of the larger exponent d . Thus we have

$$\hat{u}^t P_i \geq c_i, \quad i \in I,$$

with all components of \hat{u} of degree $\leq d$, and we are done.

Q.E.D.

REMARK. The following example shows that the bound d on the maximal degree of a solution $u \in R(M)^n$ is best possible. Let N = the set of positive integers. Every solution $u \in R(M)^n$ to the following inequalities has polynomial part of degree at least n :

$$\begin{aligned} u_1 &\geq k & \text{all } k \in N \\ u_2 &\geq ku_1 & \text{all } k \in N \\ &\vdots & \vdots \\ u_n &\geq ku_{n-1} & \text{all } k \in N \end{aligned}$$

2. Some consequences of the main result

To investigate the situation when (1) has a “solution in the limit”, we define a *weak solution* to (1) to be a sequence u_1, u_2, \dots in R^n such that, for each $i \in I$,

$$(3) \quad \liminf_k u_k^t P_i \geq c_i$$

where $+\infty$ is allowed as a limit.

THEOREM 2. *The following are equivalent:*

- (1) *There is a weak solution to (2) for every finite subset $J \subseteq I$.*
- (2) *There is a solution to (2) for every finite subset $J \subseteq I$.*
- (3) *There is a solution $u \in R(M)^n$ to (1) all of whose components are polynomials of degree $\leq n$.*
- (4) *There is a solution $u \in R(M)^n$ to (1).*
- (5) *There is a weak solution to (1).*

PROOF.

- (1) \rightarrow (2). The is an easy application of Farkas' Lemma.
- (2) \rightarrow (3). Theorem 1.
- (3) \rightarrow (4). Trivial.
- (4) \rightarrow (5). Let $u = u(M) \in R(M)^n$ be a solution to (1). Set $u_k = u(k)$ for every integer $k \geq 0$. It is then trivial to check that (3) holds.
- (5) \rightarrow (1). Trivial. Q.E.D.

REMARKS. (1) The equivalence of (2) and (5) in Theorem 2 is trivial for I countable, but we know of no proof for general I that does not essentially use Theorem 1. (2) In [8] an apparently more general notion of limiting convergence is discussed which employs arbitrary nets, and this notion is shown to be equiv-

alent to weak convergence. Those interested in the duality theory of Ben-Israel, Charnes, and Kortanek may wish to consult Theorem 6 of [8] for this stronger result. (3) The fact that (4) \rightarrow (3) in Theorem 2 can be made constructive by stating a procedure which transforms any solution $u \in R(M)^n$ to a solution $\tilde{u} \in R(M)^n$ of degree $\leq n$. The interested reader may consult Theorem 8 of [8].

We now give a result which explicates the nature of the duality gaps that have been observed in semi-infinite programming (see [4]).

First we shall need some terminology.

Let $P \in R^n$. We consider the semi-infinite linear program (I) and its dual (II):

$$\begin{array}{ll} (I) & (II) \\ \sup_{i \in I} \sum \lambda_i c_i & \inf u^t P \\ \text{subject to } \sum_{i \in I} \lambda_i P_i = P & \text{subject to } u^t P_i \geq c_i, \quad i \in I \\ \lambda_i \geq 0, \quad i \in I & \end{array}$$

where the sums in (I) are to be such that $\{i \mid \lambda_i \neq 0\}$ is finite. Moreover, for every finite $J \subseteq I$ we consider the finite linear program (I_J) and its dual (II_J):

$$\begin{array}{ll} (I_J) & (II_J) \\ \max_{i \in J} \sum \lambda_i c_i & \min u^t P \\ \text{subject to } \sum_{i \in J} \lambda_i P_i = P & \text{subject to } u^t P_i \geq c_i, \quad i \in J \\ \lambda_i \geq 0, \quad i \in J & \end{array}$$

Let w be the supremum to (I) where $w = -\infty$ if (I) is inconsistent and z the infimum to (II) where $w = +\infty$ if (II) is inconsistent, and let w_J and z_J be defined analogously from (I_J) and (II_J).

THEOREM 3. (1) *If the constraints of (II_J) are consistent for all finite $J \subseteq I$ then there is a weak solution u_k , $k = 1, 2, 3, \dots$, to (I) with $\lim_k u_k^t P = w$;*

(2) *For all weak solutions u_k , $k = 1, 2, 3, \dots$, to (I) we have $\lim_k \inf u_k^t P \geq w$.*

PROOF. (1) Let us assume first that w is finite. Since $w = \sup\{w_J \mid J \subseteq I \text{ and } J \text{ finite}\} = \sup\{z_J \mid J \subseteq I \text{ and } J \text{ finite}\}$, we see that, for every finite set $J \subseteq I$, the set of inequalities

$$u^t(-P) \geq -w$$

$$u^t P_i \geq c_i, \quad i \in J$$

has a solution in R^n . By Theorem 1, the semi-infinite system

$$u^t(-P) \geq -w$$

$$u^t P_i \geq c_i, \quad i \in I$$

has a solution $u = u(M) \in R(M)^n$. Set $u_k = u(k)$ for all integers k and it is easy to verify that u_k is a weak solution with $\lim_k u_k^t P \leq w$. Assuming (2) is proved, we have $\lim_k u_k^t P = w$. Also, if $\lambda^{(J)}$ is any (I_J) solution, then $\sum_{i \in J} c_i \lambda_i^{(J)} \leq \sum_{i \in J} u(M)^t P_i \lambda_i^{(J)} = u(M)^t P \Rightarrow w \leq u(M)^t P$. Hence $u(M)^t P = w$.

If $w = -\infty$, then $w_J = -\infty$ for all finite $J \subseteq I$, and hence

$$\begin{aligned} u^t(-P) &\geq +n \text{ for all integers } n = 1, 2, \dots, |J| \\ u^t P_i &\geq c_i, \quad i \in J \end{aligned}$$

has a solution in R^n , so that

$$u^t(-P) \geq +n \text{ for all integers } n$$

$$u^t P_i \geq c_i, \quad i \in I$$

has a solution $u = u(M) \in R(M)^n$. Upon setting $u_k = u(k)$ for integers k we see that (since $u(M)^t P$ must have a negative infinite part) $\lim_k u_k^t P = -\infty = w$.

If $w = +\infty$ we use the hypothesis that (II_J) is consistent to insure that (II) has a solution $u = u(M) \in R(M)^n$. Then upon setting $u_k = u(k)$ we see that u_k is a weak solution to (I) and, assuming (2) is proved, that $\lim_k u_k^t P = +\infty = w$.

(2) If $w = -\infty$ there is nothing to prove. Assuming w is finite, for every $\varepsilon > 0$ there is a finite set $J \subseteq I$ such that for suitable $\lambda_i, i \in J$, we have

$$\begin{aligned} \sum_{i \in J} \lambda_i c_i &\geq w - \varepsilon \\ \sum_{i \in J} \lambda_i P_i &= P \end{aligned}$$

$$\lambda_i \geq 0.$$

It follows at once that for any weak solution u_k we have

$$\liminf_k u_k^t P = \liminf_k \left(\sum_{i \in J} \lambda_i u_k^t P_i \right) \geq$$

$$\sum_{i \in J} \lambda_i \liminf_k u_k^t P_i \geq \sum_{i \in J} \lambda_i c_i \geq w - \varepsilon$$

Since $\varepsilon > 0$ was arbitrary, the result follows. The case $w = +\infty$, which is similar to the case for w finite, we shall leave for the reader. Q.E.D.

It is known in the case when (I) is consistent and bounded above that there are no duality gaps if one introduces asymptotic solutions to (II), having arbitrarily small errors in any locally convex topology (see Duffin [7], Theorem 1).

Theorem 3* shows that when (I) is consistent and problem (II) is viewed over an ordered field extending R , then a minimum exists for (II) which equals w , including the case $w = +\infty$. Duality gaps are thereby removed without requiring any topology whatever on (II) in a way which substitutes “direct algebraic manipulation and minimal topology”—as promised in [6], p. 784, which, in fact, motivated our work. See also [5].

REFERENCES

1. A. Ben-Israel and A. Charnes, *On the intersections of cones and subspaces*, Bull. Amer. Math. Soc. **74** (1968), 541–544.
2. A. Ben-Israel, A. Charnes and K. O. Kortanek, *Duality and asymptotic solvability over cones*, Bull. Amer. Math. Soc. **75** (1969), 318–324.
3. A. Ben-Israel, A. Charnes and K. O. Kortanek, *Erratum to duality and asymptotic solvability over cones*, Bull. Amer. Math. Soc. **76** (1970), 426.
4. A. Ben-Israel, A. Charnes and K. O. Kortanek, *Asymptotic duality in semi-infinite programming and the convex core topology*, Report No. 70-10, Series in Applied Mathematics, Northwestern University, April 15, 1970.
5. A. Charnes, W. W. Cooper and K. O. Kortanek, *On some nonstandard semi-infinite programming problems*, Technical Report No. 45, Department of Operations Research, Cornell University, March 1968.
6. A. Charnes, W. W. Cooper and K. O. Kortanek, *Duality, Haar programs, and finite sequence spaces*, Proc. Nat. Acad. Sci. U.S.A. **48** (1962), 783–786.
7. R. J. Duffin, *Infinite programs, Linear Inequalities and Related Systems*, H. W. Kuhn and A. W. Tucker (ed.), Princeton, 1956, 157–170.
8. R. G. Jeroslow and K. O. Kortanek, *Algebraic Hilbert field characterizations of asymptotic duality states and optimal paths to infinity*, Management Sciences Research Report No. 215, Carnegie-Mellon University, August 1970.
9. R. G. Jeroslow and K. O. Kortanek, *Extension fields and semi-infinite linear inequalities*, Notices Amer. Math. Soc., **18**, 246.
10. K. O. Kortanek, *Compound asymptotic duality classification schemes*, Management Sciences Research Report No. 185, Carnegie-Mellon University, November 1969.

SCHOOL OF MATHEMATICS

THE UNIVERSITY OF MINNESOTA

MINNEAPOLIS, MINNESOTA

AND

SCHOOL OF URBAN AND PUBLIC AFFAIRS

CARNEGIE-MELLON UNIVERSITY

PITTSBURGH, PENNSYLVANIA

* The only case not discussed in Theorem 3 is the case when, for finite $J \subseteq I$, (Π_J) is inconsistent. But then $w_J = +\infty$, so $w = +\infty$. Also, (Π_J) has no weak solutions, so a fortiori (Π) has no weak solutions. Thus, even considering weak solutions, $z = +\infty = w$.