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ABSTRACT 

The ordered field R(M) consists of the reals R with a transcendental M 
adjoined, which is larger than any real re  R. Given any semi-infinite matrix 
(s.i.m.) interpreted as linear inequalities: utpi >= ci, Vi~l, an arbitrary 
index set, it is also shown that the following are equivalent. (I) For every 
finite J ~_ I the system utpi >_ ci, i~J is consistent, and (2) the s.i.m, has a 
solution u~ R(M) n. Some consequences for "duality gaps" are also given. 

The main result of  this paper  is Theorem 1. The ordered field R(M) referred 

to in Theorem 1 and Lemma 1 consists of  the reals R with a transcendental M 

adjoined and with ordering derived from the infinite valuation in which a < M  

for all a e R .  

Theorem 1 is a compactness-type result, but, insofar as we know, it cannot be 

derived from the Compactness Theorem of Mathematical Logic which can insure 

the existence of a solution to (1) in some non-Archimedean elementary extension 

of R. R(M) is not such an elementary extension since x/M q~ R(M). 

The existence of solutions to (1) in R(M) under the hypotheses of  Theorem 1 

is equivalent to the fact that the limiting behavior of  "approximate  solutions" 

to (1) in an appropriate locally convex topology can be replaced by algebraic 

characterizations parametrized by polynomials over R(M). 
These results were obtained by working from the duality theo ryof  Ben-Israel, 

Charnes, and Kortanek (see [,1]-[,4]) and Kortanek [-10], but are here proven 

using convexity theory directly. The results were announced earlier in [9]. 

1. The main result 

Let an infinite set of  linear inequalities be given and symbolized thus: 

(1) utPi > ci, i ~ I  

* These results were obtained as part of the activities of the Management Science Research 
Group and School of Urban and Public Affairs, Carnegie-Mellon University. 
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where I is an arbi t rary  set, P~ ~ R ~ for  all i ~ I ,  and c~ e R for  all i ~ I .  A vector  

u ~ F n for  which (1) holds, where F is an ordered field extending R, is called a 

solution to (1).* 

LEMMA 1. Suppose that, for every finite set index J ~_ I ,  the finite system 

(2) u 'P  i > ci, i ~ J 

has a solution in R n. Let W be the space spanned by {P, li~ I}. Then either 

(i) The problem (1) has a solution in R n, or 

(ii) There exists a vector u E W, u ~ O, such that 

u t . P ~ > 0  for  all i ~ I .  

PROOF. Let  A = { (P i , - c , ) l i6 I }~J{ (O,  1) } where ( 0 , 1 ) ~ R  n x R -~ R ~+1 

Let  C(A) be all non-negat ive linear combinat ions  of  the elements  of  A. Note  

that  C ( A )  is a subset o f  W x R and is in fact a convex cone. 

Case 1. C ( A ) =  W x R.  

Then there exist scalars ).g > 0 ,  i E J ,  where J g I  is finite, and a scalar # > 0 

such that  

Z 2i(Pi, - e l )  +/ t (0 ,  1) = (0, - 1 ) .  
i e J  

where (0, - 1) ~ W x R .  By the hypotheses  concerning (2), there exists an x e R ~ 

satisfying (2), and so, by the above equat ion separa ted  into its componen t  

equations,  

O = O. x = E 2iPix >= E 2f i  

> ~, 2ic i - #  = + 1 ,  

a contradiction.  Evidently,  then, this case cannot  arise. 

Case 2. C(A) ~ W x R 

Since C(A) is a cone, the origin must  be a boundary  point  to C(A), and hence,  

by the separat ing hyperp lane  theorem,  there exists v = (u,~) ~ 0 ,  where 

u ~ W, a ~ R ,  such that  : 

(u, ~t). (Pi, - ci) >= O, i ~ 1 

(u,~).  (0,1) > O. 

* We call (1) a semi-infinite system of linear inequalities because n is finite. 
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The last equation gives c~ > 0. If  a > 0, from the first equation we get 

utpi ~ o~Ci, i • I 
i.e., 

U t 
- - P i  > ei, i • I .  
o~ 

Then (1) has a solution in R". If a = O, then the first equation gives 

utpi ~-- O, i • I .  

Since v ¢ O  and a = O ,  we have u ~ O .  

R. G. JEROSLOW AND K. O. KORTANEK Israel J. Math.,  

Q.E.D. 

THEOREM 1. With the hypotheses and notation of Lemma 1, there is a solu- 

tion u to (1) with u • R(M)" such that all components of u are polynomials of 

degree not exceeding the dimension of W. 

PROOF. The proof is by induction on d = the dimension of W. 

For d = 0, evidently P~ = 0 for all i • I ,  and so by the hypothesis regarding 

(1), each c~ _<_ 0,  i •  I ,  and hence (1) has a solution in R" and we obtain a poly- 

nomial solution in R(M)" of degree __< d = 0. 

If d > 0,  and (1) has a solution in R", we are again done. If  (I) does not have 

u, Pi >-- 0, a solution in R ' ,  then by Lemma 1 there exists a vector u such that t .  

i •  I. We then define 

= (P,  I u'P, > o} 

= {P, i u'P, = o } .  

Since u e W and u ~ O, Q' has dimension _<_ (d - 1). Since the system 

u'P¢ ~ ci, Pi • Q '  

satisfies hypotheses like (1), by induction we have the existence of a solution 

e R(M)" whose coordinates are polynomials of degree < d - 1 such that 

~ltPi >- Ci, all Pi • Q' .  

Then defining a = Mdu + ~ we see that i • Q' --, fitPi = Mdutp i q- ~ttPi -- 

Oq-~ttPi =fttPi>__ei and also i • Q - Q ' - - ~ f t t p i > c i  since u t p i > o  and M d 

exceeds 5 in size by virtue of  the larger exponent d.  Thus we have 

u~Pi >= cl, i • I,  

with all components of 5 of degree =< d,  and we are done. Q.E.D. 
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REMARK. The following example shows that the bound d on the maximal 

degree of a solution u e R ( M )  ~ is best possible. Let N = the set of positive in- 

tegers. Every solution u e R(M)"  to the following inequalities has polynomial 

part of degree at least n: 

u 1 > k all k e n  

uz > ku l  all k e N  

u, > kun_ l all k e N  

2. Some consequences of  the main result 

To investigate the situation when (1) has a "solution in the limit", we define 

a weak  solution to (1) to be a sequence ul ,  u2 , . . ,  inRnsuch that, for each i e I ,  

(3) lim k in f  t UkPi >= C~ 

where + o~ is allowed as a limit. 

THEOREM 2. The  f o l l o w i n g  are equivalent:  

(1) There  is a weak  solution to (2)for  every f in i t e  subset  J ~_ I .  

(2) There  is a solution to (2)for  every f in i te  subset J ~_ I .  

(3) T h e r e  is a solution u e R ( M )  n to (1) all o f  whose components  are poly-  

nomials  o f  degree < n.  

(4) There  is a solution u e R ( M )  n to (1). 

(5) There  is a weak  solution to (l). 

PROOF. 

(1)-.(2). 
(2)- . (3) .  

( 3 ) ~ ( 4 ) .  

( 4 )~ (5 ) .  

integer k => 

(5 )~(1 ) .  

REMARKS. 

The is an easy application of Farkas' Lemma. 

Theorem 1. 

Trivial. 

Let u = u(M)  e R(M)"  be a solution to (1). Set Uk = u(k)  for every 

0. It is then trivial to check that (3) holds. 

Trivial. Q.E.D. 

(1) The equivalence of (2) and (5) in Theorem 2 is trivial for I 

countable, but we know of no proof for general 1 that does not essentially use 

Theorem 1. (2) In [8] an apparently more general notion of limiting convergence 

is discussed which employs arbitrary nets, and this notion is shown to be equiv- 
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alent to weak convergence. Those nterested in the duality theory of Ben-Israel, 

Charnes, and Kortanek may wish to consult Theorem 6 of [8] for this stronger 

result. (3) The fact that (4) ~ (3) in Theorem 2 can be made constructive by stating 

a procedure which transforms any solution u e R (M)  n to a solution ~eR(M) ~ 

of degree < n.  The interested reader may consult Theorem 8 of [8]. 

We now give a result which explicates the nature of the duality gaps that have 

been observed in semi-infinite programming (see [4]). 

First we shall need some terminology. 

Let  P ~ R ' .  We consider the semi-infinite linear program (I) and its dual (II): 

(I) (I0 

sup ]~ 2ici inf utp 
i e I  

subject to ~ 2iP i = P subject to utPi > ci, i e I  
iEl 

2 i > O, i e I  

where the sums in (I) are to be such that {i [ 2i ~ 0} is finite. Moreover, for every 

finite J __q I we consider the finite linear program (I;) and its dual (IIj): 

(I j) (IIj) 

max ,~, 2ic i min utp 
iEJ 

subject to Y. 2iP i = P subject to u tPi > ci, i e J 
i e J  

2 i __> 0, i ~ J  

Let w be the supremum to (I) where w = - oo if (I) is inconsistent and z the 

infimum to (II) where w = + oo if (II) is inconsistent, and let wj and z; be defined 

analogously from (b) and (Ib).  

THEOREM 3. (1) I f  the constraints o f  (Ib) are consistent fo r  all f ini te  J ~ I 

then there is a weak solution u k, k = 1,2,3,- . . ,  to (I) with limkUtkp = W; 

(2) For all weak solutions Uk, k = 1,2,3,--', to (I) we have limkinfUtkP > W. 

PROOF. (1) Let us assume first that w is finite. Since w = sup{wj ]J c_ I and 

J finite} = sup {zj [ J _~ I and J finite}, we see that, for every finite set J __q I, 

the set of inequalities 

u ' ( -  P )  > - w 

utpi  >= cl,  i e  J 
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has a solution in R". By Theorem 1, the semi-infinite system 

u t ( -  P)  => - w 

utPi ~ ci, i ~ I 

has a solution u = u (M)~ R(M)". Set Uk = u(k)  for all integers k and it is easy 

to verify that  Uk is a weak solution with limku~P < W. Assuming (2) is proved,  

we have limkUtkP = W. Also, if 2 (J~ is any (Is) solution, then Ei~sCi;t[ J~ ~= 

~,i~J u (M) 'P i2 i  ~s) = u ( M )  tP ~ w ~ u ( M ) t P .  Hence u(M) 'P  = w. 

I f  w = - c~, then w s = - o o  for all finite J _ I ,  and hence 

u ' ( - P )  ~ + n for all integers n = 1, 2, . . . ,  ] d ] 

u'Pi ~= ci, i ~ J  

has a solution in R", so that  

ut ( - -P)  ~ 4. n for all integers n 

utpi ~ ci, i ~ I 

has a solution u = u (M)~  R(M) ". U p o n  setting u k = u(k)  for integers k we see 

that  (since u(M)tp must  have a negative infinite part) limkU~P = --o0 = W. 

I f  W = 4- C~ we use the hypothesis that  ( I b )  is consistent to insure that  (II)  

has a solution u = u (M)~  R(M) ". Then upon setting Uk = u(k)  we see that  Uk 

is a weak solution to (I) and, assuming (2) is proved,  tha t  limk u~P = + ~ = w .  

(2) I f  w = - c~ there is nothing to prove. Assuming w is finite, for  every 

e > 0 there is a finite set J _~ I such that  for suitable 2~, i s J ,  we have 

Z ),ic~ > w -  

Z 2iP i = P 

2 ~ > 0 .  

It  follows at once that  for any weak solution Uk we have 

l,m.,.f.Z, l,m.,.f 

2 211imkinfUkP~ > ~ 2iC i > W - 
t~J i~J 

Since e > 0 was arbitrary, the result follows. The case w = + 0% which is similar 

to the case for w finite, we shall leave for the reader. Q.E.D. 
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I t  is k n o w n  in the case when  (I) is consis tent  and  b o u n d e d  above  tha t  there  

are  no dual i ty  gaps i f  one in t roduces  asympto t ic  solut ions  to (II), having arb i t -  

rar i ly  smal l  errors  in any local ly  convex topo logy  (see Duffin I-7], Theorem 1). 

Theo rem 3* shows tha t  when (I) is consis tent  and  p rob l e m (II)  is v iewed over  

an o rdered  field extending R ,  then  a m in imum exists for  (II) which equals  w,  

inc luding  the case w = + oo. Dua l i ty  gaps are thereby  removed  wi thout  re- 

qui r ing any topo logy  whatever  on  (II) in a way which subst i tutes  "d i r ec t  a lgebra ic  

man ipu la t i on  and  min ima l  t o p o l o g y " - - a s  p romised  in [-6], p. 784, which, in 

fact, mo t iva ted  our  work.  See also [-5]. 
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* The only case not discussed in Theorem 3 is the case when, for finite J ~ / ,  (1I.i) is in- 
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