ON SEMI-INFINITE SYSTEMS OF LINEAR INEQUALITIES*

BY
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ABSTRACT

The ordered field R(M) consists of the reals R with a transcendental M
adjoined, which is larger than any real re R. Given any semi-infinite matrix
(s.i.m.) interpreted as linear inequalities: w'P; = ¢;, V;€ > an arbitrary
index set, it is also shown that the following are equivalent. (1) Forevery
finite J < I the system #'P; = ¢;, i€ J is consistent, and (2) the s.i.m. has a
solution ue& R(M)". Some consequences for “duality gaps” are also given.

The main result of this paper is Theorem 1. The ordered field R(M) referred
to in Theorem 1 and Lemma 1 consists of the reals R with a transcendental M
adjoined and with ordering derived from the infinite valuation in which a <M
for all aeR.

Theorem 1 is a compactness-type result, but, insofar as we know, it cannot be
derived from the Compactness Theorem of Mathematical Logic which can insure
the existence of a solution to (1) in some non-Archimedean elementary extension
of R. R(M) is not such an elementary extension since JMéRM).

The existence of solutions to (1) in R(M) under the hypotheses of Theorem 1
is equivalent to the fact that the limiting behavior of “approximate solutions”
to (1) in an appropriate locally convex topology can be replaced by algebraic
characterizations parametrized by polynomials over R(M).

These results were obtained by working from the duality theory of Ben-Israel,
Charnes, and Kortanck (see [1]-[4]) and Kortanek [10], but are here proven
using convexity theory directly. The results were announced earlier in [9].

1. The main result
Let an infinite set of linear inequalities be given and symbolized thus:

63} WP, =¢, i€l

* These results were obtained as part of the activities of the Management Science Research
Group and School of Urban and Public Affairs, Carnegie-Mellon University.
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where I is an arbitrary set, P,e R" for all ie I, and ¢;eR for all iel. A vector
u e F" for which (1) holds, where F is an ordered field extending R, is called a
solution to (1).*

LemMMA 1. Suppose that, for every finite set index J < I, the finite system

2 WP, =c, iel

has a solution in R". Let W be the space spanned by {P,|ieI}. Then either
(i) The problem (1) has a solution in R*, or
(i) There exists a vector ue W, u £ 0, such that

u'-P,z 0 for all iel.

Proor. Let A = {(P;, —c)|iel}U{(0,1)} where (0,1)eR" x R = R"*".
Let C(4) be all non-negative linear combinations of the elements of A. Note
that C( 4) is a subset of W x R and is in fact a convex cone.

Case 1. C(4) = W x R.

Then there exist scalars 2; = 0, ieJ, where J<I is finite, and a scalar u = 0
such that

EJ APy, —¢) + u0,1) = (0, —1).
where (0, —1)e W x R. By the hypotheses concerning (2), there exists an x e R"
satisfying (2), and so, by the above equation separated into its component
equations,

0=0'x= E}.,Pix g Zlici

ieJ et
2 XAg—u=+1,
ied

a contradiction. Evidently, then, this case cannot arise.
Case 2. C(A) # W xR
Since C(A) is a cone, the origin must be a boundary point to C(4), and hence,
by the separating hyperplane theorem, there exists v = (u,a) 7 0, where
ue W, aeR, such that :
(u,a)* (P;, —c;)) = 0, iel

(u,2)(0,1) 2 0.

* We call (1) a semi-infinite system of linear inequalities because # is finite.
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The last equation gives « = 0. If « > 0, from the first equation we get

u'P, = ac;, iel
ie.,
t

“ p.
o

1\

Ci» iel.

13

Then (1) has a solution in R". If « = 0, then the first equation gives
u'P, 20, iel.

Since v # 0 and « =0, we have u % 0. Q.E.D.

THEOREM 1. With the hypotheses and notation of Lemma 1, there is a solu-
tion u to (1) with ue R(M)" such that all components of u are polynomials of
degree not exceeding the dimension of W.

ProOoF. The proof is by induction on d = the dimension of W.

For d = 0, evidently P; = 0 for all ie, and so by the hypothesis regarding
(1), each ¢; £ 0, iel, and hence (1) has a solution in R" and we obtain a poly-
nomial solution in R(M)" of degree < d = 0.

If d > 0, and (1) has a solution in R*, we are again done. If (1) does not have
a solution in R", then by Lemma 1 there exists a vector u such that u}-P, 2 0,
iel. We then define

Q = {P;|u'P,>0}

Q' = {P;{u'P; = 0}.
Since ue W and u ## 0, Q' has dimension £ (d — 1). Since the system

u'P; 2z ¢, PieQ’
satisfies hypotheses like (1), by induction we have the existence of a solution
#ie R(M)" whose coordinates are polynomials of degree <d — 1 such that

i'P, = ¢;, all P,eQ’.

Then defining # = M% + & we see that icQ’ — i'P; = M%'P,+@'P; =

0+i#'P, = 4'P, = ¢; and also ieQ— Q' — d'P;>¢; since u'P;>0 and M’

exceeds # in size by virtue of the larger exponent d. Thus we have
W'P; = ¢, iel,

with all components of # of degree < d, and we are done. Q.E.D.
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ReMARK. The following example shows that the bound d on the maximal
degree of a solution ue R(M)" is best possible. Let N = the set of positive in-
tegers. Every solution ue R(M)" to the following inequalities has polynomial
part of degree at least n:

u, =k all ke N

u, = ku, all keN

u, = ku,_, all keN

2. Some consequences of the main result
To investigate the situation when (1) has a *‘solution in the limit”’, we define
a weak solution to (1) to be a sequence u;,u,, -+ in R*such that, for each iel,

3) lim inf u;P; = c;
where + oo is allowed as a limit.

THEOREM 2. The following are equivalent:

(1) There is a weak solution to (2) for every finite subset J < I.

(2) There is a solution to (2) for every finite subset J < 1.

(3) There is a solution ue R(IMY" to (1) all of whose components are poly-
nomials of degree <n.

(49) There is a solution ue R(M)" to (1).

(5) There is a weak solution to (1).

Proor.

(1) = (2). The is an easy application of Farkas’ Lemma.

(2) » (3). Theorem 1.

(3) = (4). Trivial.

4) — (5). Letu = u(M)e R(M)" be a solution to (1). Set u;, = u(k) for every
integer k = 0. It is then trivial to check that (3) holds.

(5) = (1). Trivial. Q.E.D.

ReMARKS. (1) The equivalence of (2) and (5) in Theorem 2 is trivial for I
countable, but we know of no proof for general I that does not essentially use
Theorem 1. (2) In [8] an apparently more general notion of limiting convergence
is discussed which employs arbitrary nets, and this notion is shown to be equiv-
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alent to weak convergence. Those nterested in the duality theory of Ben-Israel,
Charnes, and Kortanek may wish to consult Theorem 6 of [8] for this stronger
result. (3) The fact that (4) — (3) in Theorem 2 can be made constructive by stating
a procedure which transforms any solution ue R(M)" to a solution iie R(M)"
of degree < n. The interested reader may consult Theorem & of [8].

We now give a result which explicates the nature of the duality gaps that have
been observed in semi-infinite programming (see [4]).

First we shall need some terminology.

Let Pe R". We consider the semi-infinite linear program (I) and its dual (II):

) (I
sup Zi Aic; inf u'P
subject to .ZI AP, =P subject to u'P; = ¢;, iel
A l; 0, iel

where the sums in (I) are to be such that {i | A; 5% 0} is finite. Moreover, for every
finite J & I we consider the finite linear program (I,) and its dual (11,):

() (IL)
max X g min u'P
subject to .El)ijl,-Pi =P subject to u'P; = ¢;, ieJ
2420, ied
Let w be the supremum to (I) where w = — oo if (I) is inconsistent and z the

infimum to (1) where w = + oo if (I1) is inconsistent, and let w; and z; be defined
analogously from (I,) and (IL,).

TueoreM 3. (1) If the constraints of (I;) are consistent for all finite J < I
then there is a weak solution u,, k = 1,2,3,--, to (I) with lim, u,P = w;
(2) For all weak solutions u,, k = 1,2,3,---, to (I) we have lim,infu;P = w.

ProoF. (1) Let us assume first that w is finite. Since w = sup{w ,IJ < I and
J finite} = sup {z,lJ <I and J finite}, we see that, for every finite set J < [,
the set of inequalities

W(—-P) =z —w

u'P; 2 ¢

(1%

i 1€d
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has a solution in R". By Theorem 1, the semi-infinite system

u(—P)

1\%
|
3

WP, ¢, i€l

has a solution u = u(M)e R(M)". Set u, = u(k) for all integers k and it is easy
to verify that u, is 2 weak solution with limuP < w. Assuming (2) is proved,
we have lim, ulP = w. Also, if A“? is any (I,) solution, then X, ,cA” <
Yoo u(M)'PAY = u(M)'P = w < u(M)'P. Hence u(M)P = w.

If w= — 0, then w; = —oo for all finite J < I, and hence
u'(—P) = +n for all integers n = 1,2,-, Jl
utPi ;C,-, ielJ

has a solution in R", so that
u'(—P) = +n for all integers n

u'P;

13

v

C, iel

has a solution u = u(M)e R(M)". Upon setting u, = u(k) for integers k we see

that (since u(M)'P must have a negative infinite part) lim,u;P = —o0 = w.
If w = + oo we use the hypothesis that (II,) is consistent to insure that (II)

has a solution u = u(M)e R(M)". Then upon setting u, = u(k) we see that u,

is a weak solution to (I) and, assuming (2) is proved, that lim, 4P = + ¢ = w.
(2) If w = — oo there is nothing to prove. Assuming w is finite, for every

& > 0 there is a finite set J & I such that for suitable 4, ieJ, we have

A zZw—e

ield
2 A‘iPi = P
ied

420.

Tt follows at once that for any weak solution u, we have

lim,infu/P = lim,inf ( > Aiuk’Pi) >

ielJ

Z LlimginfuiP, =2 X e,z w—e
relJ iel

Since & > 0 was arbitrary, the result follows. The case w = + oo, which is similar
to the case for w finite, we shall leave for the reader. Q.E.D.
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Tt is known in the case when (I) is consistent and bounded above that there
are no duality gaps if one introduces asymptotic solutions to (II), having arbit-
rarily small errors in any locally convex topology (see Duffin [7], Theorem 1).

Theorem 3* shows that when (1) is consistent and problem (II) is viewed over
an ordered field extending R, then a minimum exists for (II) which equals w,
including the case w = + co. Duality gaps are thereby removed without re-
quiring any topology whatever on (II) in a way which substitutes ‘‘direct algebraic
manipulation and minimal topology’’—as promised in [6], p. 784, which, in
fact, motivated our work. See also [5].
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* The only case not discussed in Theorem 3 is the case when, for finite J < 7, () is in-
consistent. But then wy = 4 o, s0 w= + 0. Also, (I;) has no weak solutions, so a fortiori (II)
has no weak solutions. Thus, even considering weak solutions, z = 4- 0 = w.



